Background: Deregulation of the antioxidant enzymes was implicated in pathogenesis and complications of type 2 diabetes mellitus (T2DM). The data relate the genetic variants of these enzymes to T2DM are inconsistent among various populations. Purpose: We aimed to explore the association of 13 genetic variants of "superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and nitric oxide synthase (NOS)" with T2DM susceptibility and the available clinical laboratory data. Subjects and Methods: A total of 384 individuals were enrolled in this work. Different genotypes of the genes mentioned above were characterized using TaqMan OpenArray Genotyping assays on a Real-Time polymerase chain reaction system. Results: After age-and sex-adjustment, among the studied 13 variants, GSTT1 rs17856199 was associated with T2DM under homozygote (OR=3.42; 95% CI:1.04-11.2, p=0.031), and recessive (OR=3.57; 95% CI: 1.11-11.4, p=0.029) comparison models. The NOS2 rs2297518*A allele was more frequent among the T2DM cohort (58.1% vs 35.4%, p<0.001) and showed a dose-response effect; being heterozygote was associated with higher odds for developing DM (OR=4.06, 95% CI=2.13-7.73, p<0.001), whereas being AA homozygote had double the risk (OR=9.06, 95% CI=3.41-24.1, p<0.001). Combined NOS2 rs2297518*A and either GSTT1 rs17856199*A or *C genotype carriers were more likely to develop T2DM. Different associations with sex, BMI, hyperglycemia, and/or hyperlipidemia were evident. The principal component analysis revealed NOS2 rs2297518*G, old age, dyslipidemia, high systolic blood pressure, and elevated HbA1c were the main classifiers of T2DM patients.
Conclusion:The oxidative stress-related molecular markers, GSTT1 rs17856199 and NOS2 rs2297518 variants were significantly associated with T2DM risk and phenotype in the study population.