The causal relationship between lipid levels and bladder cancer is still inconclusive currently. We aimed to reveal the causal relationship between triglycerides, HDL, and LDL and the risk of bladder cancer by univariable and multivariable Mendelian randomization (MR) analysis. The single nucleotide polymorphisms (SNPs) of exposure (triglycerides: 441,016 samples; HDL: 403,943 samples; LDL: 440,546 samples) were obtained from UK Biobank. The Genetic variation related to bladder cancer included 1554 cases and 359,640 controls. Univariable and multivariable MR methods were conducted with subsequent analysis, and smoking was regarded as a confounder. The inverse-variance weighted (IVW), MR-Egger, weighted-median method, Cochran’s Q test, and MR-PRESSO were considered the main MR analysis and sensitivity analysis methods. Univariable MR analysis results suggested the triglycerides level (P = 0.011, OR = 1.001, 95% CI = 1.000–1.002) was causally associated with increased risk of bladder cancer. Multivariable MR results indicated that higher triglyceride levels could still increase the risk of bladder cancer after adjusting the effects of HDL, LDL, and smoking (P = 0.042, OR = 1.001, 95% CI = 1.000–1.002). Our findings supported that triglyceride level is causally associated with an increased risk of bladder cancer independent of LDL and HDL at the genetic level. Timely attention to changes in blood lipid levels might reduce the risk of bladder cancer.