Cultivated and wild species of wheat are valuable breeding resources used for the development of new cultivars with superior root traits suited to drought and non-stressed conditions. The present study aimed to determine genotypes with superior root traits and phenotypic variability among intergeneric hybrids with Triticum and Aegilops species in the early vegetative (Z11) and stem elongation (Z31) growth stages. Results indicated that phenotypic variability in rooting depth was 3.2- and 3.4-fold among the genotypes in Z11 and Z31, and it was as great as 20- and 23.8-fold for root biomass, respectively. Hierarchical clustering among 35 genotypes for root traits in both growth stages identified four major clusters, grouping the six deep-rooted genotypes in cluster 2 and three genotypes with high root biomass in cluster 1. In both growth stages, significant associations were found among the root traits. Also, the relationship was stronger between the root and shoot biomass in Z11 (r2=0.83) than in Z31 (r2=0.44). As an overall assessment, the suggested genotypes with superior root characteristics such as deep roots and/or high root biomass sustained in both growth stages might be used for the development of new cultivars.