Atopic dermatitis is a chronic inflammatory skin disease associated with cutaneous hyperreactivity to environmental triggers and is often the first step in the atopic march that results in asthma and allergic rhinitis. The clinical phenotype that characterizes atopic dermatitis is the product of interactions between susceptibility genes, the environment, defective skin barrier function, and immunologic responses. This review summarizes recent progress in our understanding of the pathophysiology of atopic dermatitis and the implications for new management strategies.
Historical perspectiveAtopic dermatitis (AD) is a chronic inflammatory skin disease associated with cutaneous hyperreactivity to environmental triggers that are innocuous to normal nonatopic individuals (1). Although written descriptions of AD date back to the early 1800s, an objective laboratory test does not exist for AD. The diagnosis of AD is based on the following constellation of clinical findings: pruritus, facial and extensor eczema in infants and children, flexural eczema in adults, and chronicity of the dermatitis.AD usually presents during early infancy and childhood, but it can persist into or start in adulthood (2). The lifetime prevalence of AD is 10-20% in children and 1-3% in adults. Its prevalence has increased two-to threefold during the past three decades in industrialized countries but remains much lower in countries with predominantly rural or agricultural areas. Wide variations in prevalence have been observed within countries inhabited by groups with similar genetic backgrounds, suggesting that environmental factors play a critical role in determining expression of AD.A precise understanding of the mechanisms underlying AD is critical for development of more effective management strategies (Table 1). Various studies indicate that AD has a complex etiology, with activation of multiple immunologic and inflammatory pathways (3). The clinical phenotype that characterizes AD is the product of complex interactions among susceptibility genes, the host's environment, defects in skin barrier function, and systemic and local immunologic responses. An understanding of the relative role of these factors in the pathogenesis of AD has been made possible by a variety of approaches, including the analysis of cellular and cytokine gene expression in AD skin lesions in humans as well as gene knockout and transgenic mouse models of candidate genes in AD. The current review will summarize progress in our understanding of the pathophysiology of AD and implications for therapy.
Atopy as a systemic diseaseSeveral observations suggest that AD is the cutaneous manifestation of a systemic disorder that also gives rise to asthma, food allergy, and allergic rhinitis (1, 2). These conditions are all characterized by elevated serum IgE levels and peripheral eosinophilia. AD is often the initial step in the so-called "atopic march," which leads to asthma and allergic rhinitis in the majority of afflicted patients. In experimental models of AD, the induction...