Abstract. Functional polymorphisms in pattern recognition receptors (PRRs) modulate
innate immunity and play a crucial role in resistance or susceptibility to
diseases. The present study was carried out to explore polymorphic patterns
in the coding sequences of PRR genes TLR3, TLR1LA (TLRs),
MDA5, LGP2 (RLRs) and NOD1 (NLR) in chicken breeds
of India, namely Ghagus (GH), Nicobari (NB) and the exotic
White Leghorn (WLH) breed. Out of 209 SNPs observed in five genes among three
breeds, 117 were synonymous (Syn) and 92 were non-synonymous (NS) SNPs. In
TLR genes the highest polymorphism was observed in NB (16, 28)
compared to GH (14, 16) and WLH (13, 19) breeds. In the MDA5 gene
the highest polymorphism was observed in GH (12) compared to NB (eight) and
WLH (four) breeds. However, an almost similar level of polymorphism was observed
in the LGP2 gene among the three breeds. In the NOD1 gene, the highest
polymorphism was observed in NB (27), followed by WLH (11) and GH (10) breeds.
The overall highest number of SNPs was observed in NB (90), followed by GH (62)
and the WLH (57) breed. With regard to variation in polymorphism among different
classes of PRRs, the study revealed the highest polymorphism in TLRs compared to
NOD1 and the RLR class of PRRs. Further, the domain locations of various Syn and
NS SNPs in each PRR among the three breeds were identified. In silico
analysis of NS SNPs revealed that most of them had a neutral effect on
protein function. However, two each in TLR1LA and LGP2
and one in the MDA5 gene were predicted to be deleterious to
protein function. The present study unravelled extensive polymorphism in the
coding sequences of the TLR and NLR class of PRR genes, and the polymorphism was
higher in indigenous chicken breeds.