Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Tacrolimus (Tac) is the cornerstone of immunosuppressant therapy after lung transplantation (LTx). It shows great inter-individual variability in pharmacokinetics, which could partly be explained by pharmacogenetic factors. Aim We aim to investigate the influence of cytochrome P450 3A5 (CYP3A5) genotypes on early post-LTx Tac metabolism and whether it is affected by concomitant use of azole antifungals. Also, we explored the association between CYP3A5 genotype and clinical outcomes. Method 90 recipients who underwent LTx from 2017 to 2019 were enrolled in the study. The effect of CYP3A5 genotype on Tac metabolism and interaction with azole antifungals were assessed during week 1-4 after transplantation. Associations between CYP3A5 genotype and the incidence of acute kidney injury (AKI), length of hospital stay and mortality were analyzed. ResultsCYP3A5*1 carriers had lower dose adjusted concentration (C/D) than CYP3A5*3/*3 group at all time points (p < 0.05). The dose ratio of CYP3A5*1 carriers to CYP3A5*3/*3 was between 1.3 and 2.4 when comparable concentrations were reached. Use of azole antifungals did not blunt the effect of CYP3A5 genotypes on Tac metabolism. Logistic regression showed Tac concentration ≥ 7.5 ng/mL at week 1 was associated with higher incidence of AKI. No statistically significant difference was found between CYP3A5 genotypes and the length of hospital stay. Kaplan-Meier analysis showed no statistically significant difference between 30-day or 1-year mortality and CYP3A5 genotype. Conclusion CYP3A5 genotype could affect Tac metabolism early after LTx. However, it had no influence on the incidence of AKI, length of hospital stay and mortality.
Background Tacrolimus (Tac) is the cornerstone of immunosuppressant therapy after lung transplantation (LTx). It shows great inter-individual variability in pharmacokinetics, which could partly be explained by pharmacogenetic factors. Aim We aim to investigate the influence of cytochrome P450 3A5 (CYP3A5) genotypes on early post-LTx Tac metabolism and whether it is affected by concomitant use of azole antifungals. Also, we explored the association between CYP3A5 genotype and clinical outcomes. Method 90 recipients who underwent LTx from 2017 to 2019 were enrolled in the study. The effect of CYP3A5 genotype on Tac metabolism and interaction with azole antifungals were assessed during week 1-4 after transplantation. Associations between CYP3A5 genotype and the incidence of acute kidney injury (AKI), length of hospital stay and mortality were analyzed. ResultsCYP3A5*1 carriers had lower dose adjusted concentration (C/D) than CYP3A5*3/*3 group at all time points (p < 0.05). The dose ratio of CYP3A5*1 carriers to CYP3A5*3/*3 was between 1.3 and 2.4 when comparable concentrations were reached. Use of azole antifungals did not blunt the effect of CYP3A5 genotypes on Tac metabolism. Logistic regression showed Tac concentration ≥ 7.5 ng/mL at week 1 was associated with higher incidence of AKI. No statistically significant difference was found between CYP3A5 genotypes and the length of hospital stay. Kaplan-Meier analysis showed no statistically significant difference between 30-day or 1-year mortality and CYP3A5 genotype. Conclusion CYP3A5 genotype could affect Tac metabolism early after LTx. However, it had no influence on the incidence of AKI, length of hospital stay and mortality.
Background and Objective Oral tacrolimus is initiated perioperatively in heart and lung transplantation patients. There have been few studies on oral tacrolimus pharmacokinetics early post-transplantation, even though tacrolimus-related toxicity may occur early, potentially leading to morbidity and mortality. Therefore, we aimed to study the pharmacokinetics of oral tacrolimus in thoracic organ recipients during the first days after transplantation. Methods We conducted a pharmacokinetic study in 30 thoracic organ transplants at intensive care at the University Medical Center Utrecht in the first week post-transplantation. Twelve-hour whole-blood tacrolimus profiles were examined using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and analysed via population pharmacokinetic modelling. Results The concentration-time profiles showed high variability. Concentrations at 12 h were outside the target range in 69% of the cases. A two-compartment model with mixed first-order and zero-order absorption adequately described tacrolimus concentrations. The typical value of the apparent clearance was 19.6 L/h (95% CI 16.2-22.9), and the apparent distribution volumes of central and peripheral compartments, V1 and V2, were 231 L (95% CI 199-267) and 521 L (95% CI 441-634), respectively. Inter-occasion (dose-to-dose) variability far exceeded the interindividual variability (IIV), with an estimated variability in relative bioavailability of 55% (95% CI 48.5-64.4). Conclusions The high variability of tacrolimus pharmacokinetics early after thoracic organ transplantation is largely due to excessive variability in bioavailability, making individualised dosing based on measured concentrations futile. To bypass this bioavailability issue, we suggest administering tacrolimus intravenously and aiming below the upper therapeutic range early post-transplantation. Clinical Trial Registraion: NTR 3912/EudraCT 2012-001909-24.
Background and Objective Abstract Therapeutic drug monitoring of tacrolimus whole-blood concentrations is standard care in thoracic organ transplantation. Nevertheless, toxicity may appear with alleged therapeutic concentrations possibly related to variability in unbound concentrations. However, pharmacokinetic data on unbound concentrations are not available. The objective of this study was to quantify the pharmacokinetics of whole-blood, total, and unbound plasma tacrolimus in patients early after heart and lung transplantation. Methods Twelve-hour tacrolimus whole-blood, total, and unbound plasma concentrations of 30 thoracic organ recipients were analyzed with high-performance liquid chromatography-tandem mass spectrometry directly after transplantation. Pharmacokinetic modeling was performed using non-linear mixed-effects modeling. Results Plasma concentration was < 1% of the whole-blood concentration. Maximum binding capacity of erythrocytes was directly proportional to hematocrit and estimated at 2700 pg/mL (95% confidence interval 1750-3835) with a dissociation constant of 0.142 pg/mL (95% confidence interval 0.087-0.195). The inter-individual variability in the binding constants was considerable (27% maximum binding capacity, and 29% for the linear binding constant of plasma). Conclusions Tacrolimus association with erythrocytes was high and suggested a non-linear distribution at high concentrations. Monitoring hematocrit-corrected whole-blood tacrolimus concentrations might improve clinical outcomes in clinically unstable thoracic organ transplants. Clinical Trial Registration NTR 3912/EudraCT 2012-001909-24.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.