Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background The dietary glycemic index (GI) and load (GL) reflect carbohydrate quality and quantity, potentially impacting fertility through modulation of insulin sensitivity and generation of oxidative stress. While fertility is influenced by both women and men, reproductive research often emphasizes maternal factors. We first examined periconception dietary intake in both women and male partners, and subsequent associations of dietary GI and GL with fecundability and subfertility. Methods Among 830 women and 651 male partners, participating in a population-based prospective cohort study from preconception onwards, we assessed periconception dietary intake and calculated GI and GL, using a food frequency questionnaire (FFQ) at median 12.4 weeks gestation (95% range 10.9, 18.4). Information on time to pregnancy was obtained through questionnaires, with subfertility defined as a time to pregnancy ≥ 12 months or use of assisted reproductive technology. Results In the periconception period, mean energy intake in women was 1870 kcal (SD: 500; 46% carbohydrates, 16% protein, 33% fat; dietary GI 56.2 (SD: 3.5) and GL 141.4 (SD: 67.4)). Mean energy intake in men was 2350 kcal (SD: 591; 43% carbohydrates, 16% protein, 33% fat; dietary GI 56.8 (SD: 3.2) and GL 156.7 (SD: 75.4)). Median time to pregnancy was 4.8 months (IQR: 1.2, 16.4), with 30.6% of 830 women experiencing subfertility. Dietary GI and GL were not associated with fertility outcomes in women. In men, higher dietary GI and GL across the full range were associated with decreased fecundability, after adjusting for socio-demographic and lifestyle factors, as well as dietary GI or GL of female partners [FR: 0.91, 95% CI 0.83, 0.99; FR: 0.90, 95% CI 0.81, 0.99, per SDS increase in dietary GI and GL, respectively]. When assessing the combined influence of dietary GI clinical categories in women and men, both partners adhering to a low GI diet tended to be associated with increased fecundability, but not with subfertility risk. Conclusions Suboptimal periconception carbohydrate intake may be negatively associated with male fertility, but not with fertility outcomes in women. Further studies are needed to assess whether a lower GI and GL diet is a feasible lifestyle intervention to improve couples fertility.
Background The dietary glycemic index (GI) and load (GL) reflect carbohydrate quality and quantity, potentially impacting fertility through modulation of insulin sensitivity and generation of oxidative stress. While fertility is influenced by both women and men, reproductive research often emphasizes maternal factors. We first examined periconception dietary intake in both women and male partners, and subsequent associations of dietary GI and GL with fecundability and subfertility. Methods Among 830 women and 651 male partners, participating in a population-based prospective cohort study from preconception onwards, we assessed periconception dietary intake and calculated GI and GL, using a food frequency questionnaire (FFQ) at median 12.4 weeks gestation (95% range 10.9, 18.4). Information on time to pregnancy was obtained through questionnaires, with subfertility defined as a time to pregnancy ≥ 12 months or use of assisted reproductive technology. Results In the periconception period, mean energy intake in women was 1870 kcal (SD: 500; 46% carbohydrates, 16% protein, 33% fat; dietary GI 56.2 (SD: 3.5) and GL 141.4 (SD: 67.4)). Mean energy intake in men was 2350 kcal (SD: 591; 43% carbohydrates, 16% protein, 33% fat; dietary GI 56.8 (SD: 3.2) and GL 156.7 (SD: 75.4)). Median time to pregnancy was 4.8 months (IQR: 1.2, 16.4), with 30.6% of 830 women experiencing subfertility. Dietary GI and GL were not associated with fertility outcomes in women. In men, higher dietary GI and GL across the full range were associated with decreased fecundability, after adjusting for socio-demographic and lifestyle factors, as well as dietary GI or GL of female partners [FR: 0.91, 95% CI 0.83, 0.99; FR: 0.90, 95% CI 0.81, 0.99, per SDS increase in dietary GI and GL, respectively]. When assessing the combined influence of dietary GI clinical categories in women and men, both partners adhering to a low GI diet tended to be associated with increased fecundability, but not with subfertility risk. Conclusions Suboptimal periconception carbohydrate intake may be negatively associated with male fertility, but not with fertility outcomes in women. Further studies are needed to assess whether a lower GI and GL diet is a feasible lifestyle intervention to improve couples fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.