Background: To explore if the quantitative perfusion histogram parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlates with the PTEN, P-Akt and m-TOR protein in lung cancer.Methods: Thirty‐three patients with 33 lesions who had been diagnosed with lung cancer were enrolled in this study. They were divided into three groups: squamous cell carcinoma (SCC, 15 cases), adenocarcinoma (AC, 12 cases) and small cell lung cancer (SCLC, 6 cases). Preoperative imaging (conventional imaging and DCE-MRI) was performed on all patients. The Exchange model was used to measure the phar- macokinetic parameters, including Ktrans, Vp, Kep, Ve and Fp, and then the histogram parameters meanvalue, skewness, kurtosis, uniformity, energy, entropy, quantile of above five parameters were analyzed. The expression of PTEN, P-Akt and m-TOR were assessed by immunohistochemistry. Spearman correlation analysis was used to compare the correlation between the quantitative perfusion histogram parameters and PTEN, P-Akt and m-TOR in different pathological subtypes of lung cancer.Results: The expression of m-TOR (P = 0.013) and P-Akt (P = 0.002) in AC was significantly higher than those in SCC. Vp (uniformity) in SCC group, Ktrans (uniformity), Ve (kurtosis, Q10, Q25) in AC group, Fp (skewness, kurtosis, energy), Ve (Q75, Q90, Q95) in SCLC group was positively correlated with PTEN, and Fp (entropy) in the SCLC group was negatively correlated with PTEN (P <0.05); Kep (Q5, Q10) in the SCLC group was positively correlated with P-Akt, and Kep (energy) in the SCLC group was negatively correlated with P-Akt (P < 0.05); Kep (Q5) in SCC group and Vp (meanvalue, Q75, Q90, Q95) in SCLC group was positively correlated with m-TOR, and Ve (meanvalue) in SCC group was negatively correlated with m-TOR (P < 0.05).Conclusions: The quantitative perfusion histogram parameters of DCE-MRI was correlated with PTEN, P-Akt and m-TOR in different pathological types of lung cancer, which may be used to indirectly evaluate the activation status of P13K / Akt / mTOR signal pathway gene in lung cancer, and provide important reference for clinical treatment.