Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Urinary concentrations of mono-hydroxylated metabolites of PAHs (OH-PAHs) have been used as biomarkers of these chemicals’ exposure in humans. Little is known, however, with regard to intra- and inter-individual variability in OH-PAH concentrations and their association with oxidative stress. We conducted a longitudinal study of measurement of urinary concentrations of 15 OH-PAHs and 7 oxidative stress biomarkers (OSBs) of DNA damage [8-hydroxy-2′-deoxyguanosine (8-OHdG)], lipid [malondialdehyde (MDA) and F
2
-isoprostanes (PGF
2α
)] and protein [
o,o
′ -dityrosine (diY)] peroxidation in 19 individuals for 44 consecutive days. Metabolites of naphthalene (OHNap), fluorene (OHFlu), phenanthrene (OHPhe), and pyrene (OHPyr) were found in >70% of 515 urine samples analyzed, at sum concentrations (∑OH-PAH) measured in the range of 0.46–60 ng/mL. After adjusting for creatinine, OHNap and ∑OH-PAH concentrations exhibited moderate predictability, with intra-class correlation coefficients (ICCs) ranging from 0.359 to 0.760. However, ICC values were low (0.001–0.494) for OHFlu, OHPhe, and OHPyr, which suggested poor predictability for these PAH metabolites. Linear mixed-effects analysis revealed that an unit increase in ∑OH-PAH concentration corresponded to 4.5%, 5.3%, 20%, and 21% increase in respective urinary 8-OHdG, MDA, PGF
2α
, and diY concentrations, suggesting an association with oxidative damage to DNA, lipids, and proteins. The daily intakes of PAHs, calculated from urinary concentrations of OH-PAHs, were 10- to 100-fold below the current reference doses. This study provides valuable information to design sampling strategies in biomonitoring studies and in assigning exposure classifications of PAHs in epidemiologic studies.