2021
DOI: 10.1002/acs.3326
|View full text |Cite
|
Sign up to set email alerts
|

Assured learning‐enabled autonomy: A metacognitive reinforcement learning framework

Abstract: Reinforcement learning (RL) agents with pre-specified reward functions cannot provide guaranteed safety across variety of circumstances that an uncertain system might encounter. To guarantee performance while assuring satisfaction of safety constraints across variety of circumstances, an assured autonomous control framework is presented in this article by empowering RL algorithms with metacognitive learning capabilities. More specifically, adapting the reward function parameters of the RL agent is performed in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 49 publications
0
0
0
Order By: Relevance