We previously reported that calpain, the Ca2+-sensitive cysteine protease, gets involved in atherogenesis. This study aimed to investigate the effects of calpain inhibitor I (CAI, 5 mg/kg per day) with or without NG-nitro-l-arginine-methyl ester (l-NAME) (100 mg/kg per day), the inhibitor of nitric oxide synthase (NOS), on atherosclerosis and inflammation in a rat model induced by high-cholesterol diet (HCD). The results demonstrated HCD increased protein expression of calpain-1 but not calpain-2 in aortic tissue. In addition, CAI reduced the thickness of atherosclerotic intima compared with HCD group, which was weakened by the l-NAME combination. CAI with or without l-NAME decreased the activity of calpain in the aorta. Also, CAI decreased the expressions of vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) in the aorta at the levels of both mRNA and protein. Furthermore, CAI increased the activity and the protein expression of endothelial NOS (eNOS) accompanied by increased content of NO and downregulated the protein expression of nuclear factor κB (NF-κB) of the nucleus in the aorta. However, the abovementioned effects were at least partly cancelled by l-NAME except for the protein expression of eNOS. The results suggested that CAI attenuated atherosclerosis and inflammation through eNOS/NO/NF-κB pathway.