2021
DOI: 10.3390/brainsci11010077
|View full text |Cite
|
Sign up to set email alerts
|

Astrocyte-Derived TGFβ1 Facilitates Blood–Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells

Abstract: The blood–brain barrier is a specialized structure in mammals, separating the brain from the bloodstream and maintaining the homeostasis of the central nervous system. The barrier is composed of various types of cells, and the communication between these cells is critical to blood–brain barrier (BBB) function. Here, we demonstrate the astrocyte-derived TGFβ1-mediated intercellular communication between astrocytes and brain microvascular endothelial cells (BMECs). By using an in vitro co-culture model, we obser… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
23
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 22 publications
(24 citation statements)
references
References 50 publications
1
23
0
Order By: Relevance
“…The α-hemolysin HlyA in meningitic E. coli was shown to decrease the TGFβ1 receptor TGFBRII and the key transcription factor Gli2 of hedgehog signaling, which finally led to BBB disruption. Together with our recent conclusion that astrocytes-derived TGFβ1 facilitates BBB function via activating non-canonical hedgehog signaling in BMECs [ 13 ], we here revealed a novel strategy for meningitic E. coli induction of BBB dysfunction by disturbing the regular astrocytes-endothelium cross-talking. This finding could largely extend the current knowledge of bacterial-caused CNS dysfunction from perspective of intercellular communication within BBB, and shall be beneficial for future prevention and control of bacterial meningitis.…”
Section: Introductionsupporting
confidence: 73%
See 4 more Smart Citations
“…The α-hemolysin HlyA in meningitic E. coli was shown to decrease the TGFβ1 receptor TGFBRII and the key transcription factor Gli2 of hedgehog signaling, which finally led to BBB disruption. Together with our recent conclusion that astrocytes-derived TGFβ1 facilitates BBB function via activating non-canonical hedgehog signaling in BMECs [ 13 ], we here revealed a novel strategy for meningitic E. coli induction of BBB dysfunction by disturbing the regular astrocytes-endothelium cross-talking. This finding could largely extend the current knowledge of bacterial-caused CNS dysfunction from perspective of intercellular communication within BBB, and shall be beneficial for future prevention and control of bacterial meningitis.…”
Section: Introductionsupporting
confidence: 73%
“…1 B). Noticeably, we have recently evidenced that astrocytes-derived TGFβ1 could facilitate the BBB barrier function by increasing ZO-1 expression in BMECs via a non-canonical hedgehog signaling [ 13 ]. We therefore presumed that such TGFβ1-mediated intercellular communication between astrocytes and endothelium was largely disturbed during meningitic E. coli infection.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations