Multipartite entanglement is a resource for application in disparate protocols, of computing, communication and cryptography. Nested entanglement provides resource-states for quantum information processing. In this paper, Matryoshka quantum resource-states, which contain nested entanglement patterns, has been studied. A novel scheme for the generation of such quantum states has been proposed using an anisotropic XY spin-spin interaction-based model. The application of the Matryoshka GHZ-Bell states for n-qubit teleportation is reviewed and an extension to more general Matryoshka ExhS-Bell states is posited. An example of Matryoshka ExhS-Bell states is given in the form of the genuinely entangled seven-qubit Xin-Wei Zha state. Generation, characterisation and application of this seven-qubit resource state in theoretical schemes for quantum teleportation of arbitrary one, two and three qubits states, bidirectional teleportation of arbitrary two qubit states and probabilistic circular controlled teleportation are presented.