Methyl-and phenyllithium aggregates with enantiopure anisyl fencholate units form after reaction of organolithium reagent with (+)-anisyl fenchol in hydrocarbon and some ethereal solvents. These carbanionic aggregates are characterized by X-ray crystal analyses and exhibit both 3:1 stoichiometry and distorted cubic Li 4 O 3 C 1 cores, in which three lithium ions coordinate the carbanion (i.e., methylide or phenylide). These three lithium ions define a Lewis acidic surface (Li 3 ), binding the carbanion and expanding with the steric demand of the carbanion (i.e., from Me: 2.62 Å 2 , over n-Bu: 2.65 Å 2 (previous work) to Ph: 2.79 Å 2 ). Methylation and phenylation reactions of various prochiral aldehydes employing these methyllithium and phenyllithium aggregates yield alcohols with up to 44% ee. To rationalize the formation of the mixed (carb-)anionic aggregates, aggregate formation energies, describing co-condensations of RLi (R = Me, Ph, n-Bu) and lithium fencholates, are computed for the 3:1 and 2:2 stoichiometries. These computed aggregate formation energies point to preferences for 3:1 over 2:2 aggregates, as it is also apparent from experimental aggregate formations, confirmed by X-ray crystal analyses. In close analogy to the X-ray crystal structures, the computed Li 3 surfaces increase with increasing steric demand of the carbanions. The chiral, mixed (carb-)anionic RLi-fencholate aggregates hence adapt to different carbanion sized and arise not only with small (Me) or primary carbanions (n-Bu) but even with the larger secondary phenyl anion.