The power quality of electrical grids is becoming an important issue worldwide. The electrical grid has to deliver sinusoidal voltages and currents without frequency or amplitude variations. However, the connection of non-linear loads generates harmonics that degrade the grid quality. The presence of harmonics in the load currents has many negative consequences and can distort the voltage waveform at the point of common coupling (PCC). Thus, it is essential to mitigate the harmonics in order to maintain a suitable grid quality. This is a shared responsibility between energy suppliers, manufacturers of electric and electronic equipment, and users. In this context, this work presents, for each stakeholder, a comprehensive analysis of their responsibilities and the standards that they should meet. Additionally, this paper reviews the most common types of filters used to comply with the applicable standards in industrial applications. Finally, in order to prove that active power filters allow maintaining good power quality in all types of grid, commercially available active power filters were installed in three different grids contexts: an office building, a factory, and a stadium with a large number of LEDs. The experimental results obtained were used to evaluate the impact of active filters on grid quality. This review would help users to overcome their grid distortion problems.