When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a spheroidal nanoinclusion embedded in an elastic medium on the basis of surface elasticity theory. Using Boussinesq-Sadowsky potential function method, we obtain the deformation field near the inclusion subjected to a uniformly uniaxial loading at infinity. The results show that the elastic fields near the nano-inclusion depend strongly on the interface properties, the size and shape of inclusion. These new characteristics may be helpful to understand various relevant mechanical performances of nanosized inhomogeneities.