2018
DOI: 10.18255/1818-1015-2018-1-18-32
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotic Approximation of the Solution of the Reaction-Diffusion-Advection Equation with a Nonlinear Advective Term

Abstract: Аннотация. В работе рассматривается решение вида движущегося фронта начально-краевой задачи для сингулярно возмущенного уравнения реакция-диффузия-адвекция в полосе с периодическими условиями по одной из переменных. Особенностями настоящей работы является постановка задачи в двумерной области и наличие большого адвективного слагаемого в исходном уравнении. Интерес к решениям вида фронта связан с задачами горения или нелинейных акустических волн. В области определения функции, описывающей движущийся фронт, соде… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 7 publications
0
2
0
Order By: Relevance
“…Thus, in the article [22], the authors describe the recent construction of an autowave model predicting the growth of the city of Shanghai in the near future. Problems with a solution in the form of a front on a segment are considered in [3,34], and the motion of a two-dimensional front is studied in [4,5,21,33].…”
Section: Introductionmentioning
confidence: 99%
“…Thus, in the article [22], the authors describe the recent construction of an autowave model predicting the growth of the city of Shanghai in the near future. Problems with a solution in the form of a front on a segment are considered in [3,34], and the motion of a two-dimensional front is studied in [4,5,21,33].…”
Section: Introductionmentioning
confidence: 99%
“…For partial differential equations with small parameters, e.g. the model (1) with small diffusion parameter µ, asymptotic methods are particularly attractive as such technique makes it possible to find the approximate solutions of singularly perturbed boundary value problems, and express these solutions in terms of known functions or quadratures from them, and also allows us to prove the existence and uniqueness of these solutions [29,30,31]. In particular, the closer the small parameter to zero, the more effective asymptotic methods, as the system becomes very difficult for the traditional numerical solution.…”
Section: Introductionmentioning
confidence: 99%