2017
DOI: 10.3233/asy-171408
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotic approximations elucidating the Gibbs phenomenon and Fejér averaging

Abstract: This paper deals with two trigonometric sums that are pervasive in the literature dealing with the Gibbs phenomenon. In particular, the two sums often serve as test cases for methods – such as the method of Fejér averaging – that aim to overcome the Gibbs phenomenon. Each of the two is the partial sum of a convergent infinite series with a discontinuous limit function. Our starting points are some recently-published results, both exact and asymptotic, for the two sums. For the case of a large number of terms, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 25 publications
0
0
0
Order By: Relevance