This work addresses the four main inducements: Lump, rogue wave, Homoclinic breather and multi-wave solutions for (2+1)-Modified Veronese Web (MVW) equation via Hirota bilinear approach and the ansatz technique. This model is a linearly degenerate integrable nonlinear partial differential equation (NLPDE) and can also be used to admit a differential covering with nonremoval physical parameters. By assuming the function [Formula: see text] in the Hirota bilinear form of the presented model as the general quadratic function, trigonometric function and exponential function form, also with appropriate set of parameters, we have prevented the lump, rogue wave, breather and multi-wave solutions successfully. A precise compatible wave transformation is utilized to obtain multi-wave solutions of governing model. Also, the motion track of the lump, Rogue wave and multi-waves is also explained both physically and theoretically. These new results contain some special arbitrary constants that can be useful to spell out diversity in qualitative features of wave phenomena.