2022
DOI: 10.21203/rs.3.rs-2285076/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Asymptotic behavior of solutions for a new general class of parabolic Kirchhoff type equation with variable exponent sources

Abstract: In this paper, we study the following problem:\begin{align*} \begin{cases} \displaystyle u_t -M\left(\int_{\Omega}\frac{\left|\nabla u\right|^{p(x)}}{p(x)}\diff x\right)\Delta_{p(x)}u = \left|u\right|^{m(x)-2}u,& (x,t)\in \Omega\times (0,T),\\ u(x,t)=0,&(x,t)\in \partial\Omega\times (0,T),\\ u(x,0)=u_0(x),&x\in \Omega, \end{cases}\end{align*}where $\Omega\subset\mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, the functions $p,m:\bar{\Omega}\to\mathbb{R}$ and the Kirchhoff fu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?