In this paper we study a simple chemostat model influenced by white noise which makes this kind of models more realistic. We use the theory of random attractors and, to that end, we first perform a change of variable using the OrnsteinUhlenbeck process, transforming our stochastic model into a system of differential equations with random coefficients. After proving that this random system possesses a unique solution for any initial value, we analyze the existence of random attractors. Finally we illustrate our results with some numerical simulations.