Effects of dense quantum plasmas on positronium (Ps) formation in an arbitrary nlm–state in the scattering of positrons from the ground state of hydrogen atoms have been investigated within the framework of a distorted wave theory that incorporates the effect of screened dipole polarization potential. The interaction of charged particles in plasmas has been modeled by a modified Debye-Huckel potential. Effects of plasma screening on the structures of differential and total cross sections have been explored for various incident positron energies in the range 20–300 eV. For the free atomic case, our results are in conformity with the existing results available in the literature. It has been found that for small screening effects, the cross section presents the oscillatory behaviour. To the best of our knowledge, this is the first attempt to estimate the screening effects on the differential and total cross sections for Ps formation in Rydberg states in dense quantum plasmas.