Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation ( − Δ ) s u + μ u = ( I α * F ( u ) ) F ′ ( u ) in R N , ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\mathbb{R}}^{N},$ (*) where μ > 0, s ∈ (0, 1), N ≥ 2, α ∈ (0, N), I α ∼ 1 | x | N − α ${I}_{\alpha }\sim \frac{1}{\vert x{\vert }^{N-\alpha }}$ is the Riesz potential, and F is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions u ∈ H s ( R N ) $u\in {H}^{s}\left({\mathbb{R}}^{N}\right)$ , by assuming F odd or even: we consider both the case μ > 0 fixed and the case ∫ R N u 2 = m > 0 ${\int }_{{\mathbb{R}}^{N}}{u}^{2}=m{ >}0$ prescribed. Here we also simplify some arguments developed for s = 1 (S. Cingolani, M. Gallo, and K. Tanaka, “Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities,” Calc. Var. Partial Differ. Equ., vol. 61, no. 68, p. 34, 2022). A key point in the proof is given by the research of suitable multidimensional odd paths, which was done in the local case by Berestycki and Lions (H. Berestycki and P.-L. Lions, “Nonlinear scalar field equations II: existence of infinitely many solutions,” Arch. Ration. Mech. Anal., vol. 82, no. 4, pp. 347–375, 1983); for (*) the nonlocalities play indeed a special role. In particular, some properties of these paths are needed in the asymptotic study (as μ varies) of the mountain pass values of the unconstrained problem, then exploited to describe the geometry of the constrained problem and detect infinitely many normalized solutions for any m > 0. The found solutions satisfy in addition a Pohozaev identity: in this paper we further investigate the validity of this identity for solutions of doubly nonlocal equations under a C 1-regularity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.