The celebrated result of Eskin, Margulis and Mozes [8] and Dani and Margulis [7] on quantitative Oppenheim conjecture says that for irrational quadratic forms q of rank at least 5, the number of integral vectors v such that q(v) is in a given bounded interval is asymptotically equal to the volume of the set of real vectors v such that q(v) is in the same interval. In rank 3 or 4, there are exceptional quadratic forms which fail to satisfy the quantitative Oppenheim conjecture. Even in those cases, one can say that two asymptotic limits coincide for almost all quadratic forms ([8, Theorem 2.4]). In this paper, we extend this result to the S-arithmetic version.