Abstract:We prove that the circular chromatic index of a cubic graph $G$ with $2k$ vertices and chromatic index $4$ is at least $3+2/k$. This bound is (asymptotically) optimal for an infinite class of cubic graphs containing bridges. We also show that the constant $2$ in the above bound can be increased for graphs with larger girth or higher connectivity. In particular, if $G$ has girth at least $5$, its circular chromatic index is at least $3+2.5/k$. Our method gives an alternative proof that the circular chromatic in… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.