Abstract:For homogeneous one-dimensional Cantor sets, which are not necessarily self-similar, we show under some restrictions that the Euler exponent equals the quantization dimension of the uniform distribution on these Cantor sets. Moreover for a special sub-class of these sets we present a linkage between the Hausdorff and the Packing measure of these sets and the high-rate asymptotics of the quantization error.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.