Stoichiometric producer–grazer models are nonsmooth due to the Liebig’s Law of Minimum and can generate new dynamics such as bistability for producer–grazer interactions. Environmental noises can be extremely important and change dynamical behaviors of a stoichiometric producer–grazer model. In this paper, we consider a stochastically forced producer–grazer model and study the phenomena of noise-induced state switching between two stochastic attractors in the bistable zone. Namely, there is a frequent random hopping of phase trajectories between attracting basins of the attractors. In addition, by applying the stochastic sensitivity function technique, we construct the confidence ellipse and confidence band to find the configurational arrangement of equilibria and a limit cycle, respectively.