Abstract:We study the asymptotic shape of random unlabelled graphs subject to certain subcriticality conditions. The graphs are sampled with probability proportional to a product of Boltzmann weights assigned to their $2$-connected components. As their number of vertices tends to infinity, we show that they admit the Brownian tree as Gromov–Hausdorff–Prokhorov scaling limit, and converge in a strengthened Benjamini–Schramm sense toward an infinite random graph. We also consider models of random graphs that are allowed … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.