In this paper, we introduce branching processes in a Lévy random environment. In order to define this class of processes, we study a particular class of non-negative stochastic differential equations driven by a white noise and Poisson random measures which are mutually independent. Following similar techniques as in Dawson and Li (Ann. Probab. 40:813-857, 2012) and Li and Pu (Electron. Commun. Probab. 17(33):1-13, 2012), we obtain existence and uniqueness of strong local solutions of such stochastic equations. We use the latter result to construct continuous state branching processes with immigration and competition in a Lévy random environment as a strong solution of a stochastic differential equation. We also study the long term behaviour of two interesting examples: the case with no immigration and no competition and the case with linear growth and logistic competition.