“…For given scalars s 2 > 0, tuning parameter g (0 < g < 1), m and a > 0, the equilibrium point of system (39) is robustly exponentially admissible and for any switching signal r with ADT satisfying T a > T Ã a 5 ln l 1 a ; l 1 ! 1 (40) if there exist symmetric positive-definite matrices P i , Q 1i , Q 2i , Q 3i , R 1i , R 2i , R 3i , real matrices K 1 , K 2 , for any matrix S with appropriate dimension, some known matrices u 1i , u 2i , unknown scalars d i , and the constant matrix R 2 R n3ðn2rÞ satisfying E T i R50 with rank(R) 5 n -r such that the following symmetric LMIs hold:…”