2015
DOI: 10.1016/j.jeconom.2014.10.009
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotic theory for differentiated products demand models with many markets

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
17
0

Year Published

2015
2015
2024
2024

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 34 publications
(19 citation statements)
references
References 27 publications
2
17
0
Order By: Relevance
“…11 If inf c t I ct grows fast enough with n × T , this estimator is uniformly consistent, that is, sup c sup t S ct − E(Y ict |η c ) → p 0. Section 3.2 of Freyberger's (2015) arguments (using Bernstein's Inequality) implies that the above convergence holds if log(n × T )/ min c t I ct → 0.…”
mentioning
confidence: 98%
“…11 If inf c t I ct grows fast enough with n × T , this estimator is uniformly consistent, that is, sup c sup t S ct − E(Y ict |η c ) → p 0. Section 3.2 of Freyberger's (2015) arguments (using Bernstein's Inequality) implies that the above convergence holds if log(n × T )/ min c t I ct → 0.…”
mentioning
confidence: 98%
“…Freyberger develops asymptotic theory in differentiated product demand systems according to a small number of products and a large number of markets [17]. However, few of the above literatures deal with the strategic customers.…”
Section: Literature Reviewmentioning
confidence: 99%
“…We ignore the simulation error in the following. See Berry, Linton, and Pakes () and Freyberger () for dealing with the simulation error. Define d2f()θdθ2, the second derivative of a vector‐valued function f , by d2fθdθ2d2fθdθ12d2fθdθ1dθKd2fθdθKdθ1d2fθdθKdθK,where d2f()θdθkdθk is a column vector.…”
Section: The Ablp Estimationmentioning
confidence: 99%