2015
DOI: 10.4236/apm.2015.510057
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotically Confirmed Hypotheses Method for the Construction of Micropolar and Classical Theories of Elastic Thin Shells

Abstract: In the present paper asymptotic solution of boundary-value problem of three-dimensional micropolar theory of elasticity with free fields of displacements and rotations is constructed in thin domain of the shell. This boundary-value problem is singularly perturbed with small geometric parameter. Internal iteration process and boundary layers are constructed, problem of their jointing is studied and boundary conditions for each of them are obtained. On the basis of the results of the internal boundary-value prob… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 15 publications
0
1
0
1
Order By: Relevance
“…The solution of the problem, accounting for classical and nonclassical boundary conditions, can, in general, be considered as a sum of a momentless solution and boundary-layer type corrections [66][67][68]. The momentless solution does not satisfy nonclassical boundary conditions.…”
Section: Boundary-value Problemmentioning
confidence: 99%
“…The solution of the problem, accounting for classical and nonclassical boundary conditions, can, in general, be considered as a sum of a momentless solution and boundary-layer type corrections [66][67][68]. The momentless solution does not satisfy nonclassical boundary conditions.…”
Section: Boundary-value Problemmentioning
confidence: 99%
“…В работах [13][14][15][16][17][18] на основе асимптотических свойств решений трёхмерной микрополярной теории упругости со свободным вращением в тонких областях [19] сформулированы достаточно общие гипотезы и построены прикладные теории микрополярных упругих тонких стержней, пластин и оболочек с независимыми полями перемещений и вращений. В работах [20,21] развивается метод конечных элементов решения краевых задач статики и динамики микрополярных упругих тонких стержней и пластин со свободным вращением.…”
unclassified