Abstract. This paper investigates the asymptotic behaviour of solutions to certain infinite systems of coupled recurrence relations. In particular, we obtain a characterisation of those initial values which lead to a convergent solution, and for initial values satisfying a slightly stronger condition we obtain an optimal estimate on the rate of convergence. By establishing a connection with a related problem in continuous time, we are able to use this optimal estimate to improve the rate of convergence in the continuous setting obtained by the authors in a previous paper. We illustrate the power of the general approach by using it to study several concrete examples, both in continuous and in discrete time.