Abstract:We study the asymptotics of solutions of logistic type equations with fractional Laplacian as time goes to infinity and as the exponent in nonlinear part goes to infinity. We prove strong convergence of solutions in the energy space and uniform convergence to the solution of an obstacle problem. As a by-product, we also prove the cut-off property for eigenvalues of the Dirichlet fractional Laplace operator perturbed by exploding potentials.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.