2011
DOI: 10.1080/03605301003758369
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotics Near ±m of the Spectral Shift Function for Dirac Operators with Non-Constant Magnetic Fields

Abstract: We consider a 3-dimensional Dirac operator H0 with non-constant magnetic field of constant direction, perturbed by a sign-definite matrix-valued potential V decaying fast enough at infinity. Then we determine asymptotics, as the energy goes to +m and −m, of the spectral shift function for the pair (H0 + V, H0). We obtain, as a by-product, a generalised version of Levinson's Theorem relating the eigenvalues asymptotics of H0 + V near +m and −m to the scattering phase shift for the pair (H0 + V, H0).

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
1
8

Year Published

2013
2013
2023
2023

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(15 citation statements)
references
References 35 publications
0
6
1
8
Order By: Relevance
“…Let us emphasize that the previous theorem is the first topological version of Levinson's theorem when an infinite number of eigenvalues is involved. Note however that a generalized Levinson's theorem involving an infinite number of bound states already appeared in [9,14], but it corresponds to a relation between the asymptotic behaviors of the spectral shift function and of the eigenvalues counting functions. A deeper understanding of the relation between our result and the results contained in these papers would certainly be valuable.…”
Section: Index Theoremsmentioning
confidence: 99%
“…Let us emphasize that the previous theorem is the first topological version of Levinson's theorem when an infinite number of eigenvalues is involved. Note however that a generalized Levinson's theorem involving an infinite number of bound states already appeared in [9,14], but it corresponds to a relation between the asymptotic behaviors of the spectral shift function and of the eigenvalues counting functions. A deeper understanding of the relation between our result and the results contained in these papers would certainly be valuable.…”
Section: Index Theoremsmentioning
confidence: 99%
“…Pour ±V > 0, il n'y a pas d'accumulation de valeurs propres près de ±m. Nous pouvons comparer nos résultatsà ceux de [33] sur la distribution asymptotique près de ±m du spectre discret dans (−m, m) de Dans cette sous-section, nous résumons quelques résultats dusà G. D. Raikov sur les opérateurs de type Toeplitz (voir [23]).…”
Section: Remarque 22 De Manière Plus Générale Dans Le Théorème 24 unclassified
“…La perturbation V ≡ {V jk } 1≤ j,k≤n (n = 2 ou 4) est un potentiel matriciel hermitien symétrique identifiéà l'opérateur de multiplication par V , et dont les coefficients V jk ∈ L ∞ (R 3 , C) décroissent super-exponentiellement par rapportà la variable x 3 . Pour ces opérateurs, G. D. Raikov dans [23] et R. Tiedra de Aldecoa dans [33]étudient la fonction de décalage spectral respectivement près de 0 et ±m et montrent qu'elle possède des singularités pour V de signe fixé décroissant polynomialementà l'infini. Il est naturel de penser que ces explosions 1096 D. Sambou de la fonction de décalage spectral sont liéesà une accumulation de résonances près de 0 et ±m.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Beside the extensions already presented in Sections 6 and 8, others are appealing. For example, it would certainly be interesting to recast the generalized Levinson's theorem exhibited in [44,55] in our framework. Another challenging extension would be to find out the suitable algebraic framework for dealing with scattering systems described in a two-Hilbert spaces setting.…”
Section: Introductionmentioning
confidence: 99%