2020
DOI: 10.15330/cmp.12.1.138-147
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotics of approximation of functions by conjugate Poisson integrals

Abstract: Among the actual problems of the theory of approximation of functions one should highlight a wide range of extremal problems, in particular, studying the approximation of functional classes by various linear methods of summation of the Fourier series. In this paper, we consider the well-known Lipschitz class $\textrm{Lip}_1\alpha $, i.e. the class of continuous $ 2\pi $-periodic functions satisfying the Lipschitz condition of order $\alpha$, $0<\alpha\le 1$, and the conjugate Poisson integral acts as the ap… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 29 publications
(3 citation statements)
references
References 0 publications
0
1
0
2
Order By: Relevance
“…The approximation properties of the generalized Poisson integrals have been studied only in the cases γ = 1 (Poisson integral) and γ = 1 (Weierstrass integral). In particular, the Kolmogorov-Nikol'skii problems for the Poisson integral on the different functional classes have been solved in [7][8][9][10][11]. Similar problems for Weierstrass integral have been solved in [5,[12][13][14].…”
Section: Introductionmentioning
confidence: 99%
“…The approximation properties of the generalized Poisson integrals have been studied only in the cases γ = 1 (Poisson integral) and γ = 1 (Weierstrass integral). In particular, the Kolmogorov-Nikol'skii problems for the Poisson integral on the different functional classes have been solved in [7][8][9][10][11]. Similar problems for Weierstrass integral have been solved in [5,[12][13][14].…”
Section: Introductionmentioning
confidence: 99%
“…Что касается общей теории линейных методов суммирования рядов Фурье [7], то особое место среди последних занимают методы, которые задаются посредством совокупности функций натурального аргумента [8][9][10][11][12][13][14]. Примеры таких линейных методов -методы суммирования Абеля-Пуассона [15][16][17] (или же просто Пуассона [18][19][20]), Гаусса-Вейерштрасса [21], бигармонического [22][23][24] и тригармонического [25][26][27] интегралов Пуассона.…”
Section: Introductionunclassified
“…И наконец, подставляя соотношения ( 25) и (34) в правую часть равенства (17), получим скорость сходимости преобразования Фурье треугольного линейного матричного метода суммирования Абеля-Пуассона (10)…”
unclassified