Consider an anisotropic independent bond percolation model on the d-dimensional hypercubic lattice, d 2, with parameter p. We show that the two point connectivity function P p ({(0, . . . , 0) ↔ (n, 0, . . . , 0)}) is a monotone function in n when the parameter p is close enough to 0. Analogously, we show that truncated connectivity function P p ({(0, . . . , 0) ↔ (n, 0, . . . , 0), (0, . . . , 0) ∞}) is also a monotone function in n when p is close to 1.