We study the periodic problem for the Korteweg–de Vries equation with Landau damping, linear pumping and a higher-order convective nonlinearity $$\begin{aligned} \left\{ \begin{array}{c} w_{t}+w_{xxx}-\alpha w_{xx}=\beta w+\lambda w_{x}^{2}w_{xx},\text { }x\in \Omega ,t>0,\\ w(0,x)=\psi \left( x\right) ,\text { }x\in \Omega , \end{array} \right. \end{aligned}$$
w
t
+
w
xxx
-
α
w
xx
=
β
w
+
λ
w
x
2
w
xx
,
x
∈
Ω
,
t
>
0
,
w
(
0
,
x
)
=
ψ
x
,
x
∈
Ω
,
where, $$\alpha ,\beta >0,$$
α
,
β
>
0
,
$$\lambda \in \mathbb {R},$$
λ
∈
R
,
$$\Omega =\left[ -\pi ,\pi \right] .$$
Ω
=
-
π
,
π
.
We assume that the initial data $$\psi \left( x\right) $$
ψ
x
are $$2\pi $$
2
π
- periodic. We prove the global existence of solutions and analyze their large-time asymptotics.