2020
DOI: 10.1002/nla.2330
|View full text |Cite
|
Sign up to set email alerts
|

Asymptotics of the eigenvalues for exponentially parameterized pentadiagonal matrices

Abstract: Summary Let P(t) be an n × n (complex) exponentially parameterized pentadiagonal matrix. In this article, using a theorem of Akian, Bapat, and Gaubert, we present explicit formulas for asymptotics of the moduli of the eigenvalues of P(t) as t → ∞. Our approach is based on exploiting the relation with tropical algebra and the weighted digraphs of matrices. We prove that this asymptotics tends to a unique limit or two limits. Also, for n − 2 largest magnitude eigenvalues of P(t) we compute the asymptotics as n →… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?