в статье исследуется задача Коши для бисингулярно возмущенного линейного неоднородного обыкновенного дифференциального уравнения первого порядка. Рассматриваемая задача Коши имеет три особенности: сингулярное присутствие малого параметра; решение соответствующего невозмущенного уравнения имеет полюс первого порядка, а задача Коши имеет двойной пограничный слой. Сингулярное присутствие малого параметра порождает классический пограничный слой, а особая точка соответствующего невозмущенного уравнения порождает второй пограничный слой. В результате у нас получится двойной пограничный слой. Приведено необходимое и достаточное условие появления промежуточного пограничного слоя для рассматриваемого класса задач Коши. Для простоты и понимания оригинального метода исследования и понятие двойного пограничного слоя приведем подробное исследование простейшего примера.