This article focuses on the design of event-triggered asynchronous [Formula: see text] fault-tolerant controller for Markov jump system subject to actuator faults and external disturbances. The asynchronization phenomenon not only occurs between the controlled system and controller but also exists between the controlled system and faulty actuator, which are portrayed as two corresponding hidden Markov models. Moreover, a mode-dependent event-triggered mechanism is introduced to facilitate network resources utilization. Then, by introducing mode-dependent Lyapunov-Krasovskii functional, a sufficient condition is obtained to guarantee that the closed-loop system is randomly mean square stable with [Formula: see text] performance. Finally, two numerical examples are employed to illustrate the effectiveness of the proposed synthesis scheme.