In the current literature, the definitions of aging range from relying on certain sets of distinctive features at the molecular, organismal, populational and/or even evolutional levels/scales to declaring it a treatable disease and, moreover, to treating aging as a mental construct rather than a natural phenomenon. One reason of such a mess may be that it is common in the natural sciences to disregard philosophy of science where several categories of definitions are recognized, among which the nominal are less, and the so-called real ones are more appropriate in scientific contexts. E.g., water is, by its nominal definition, a liquid having certain observable features and, by its real definition, a specific combination (or a product of interaction) of hydrogen and oxygen atoms. Noteworthy, the real definition is senseless for people ignorant of atoms. Likewise, the nominal definition of aging as a set of observable features should be supplemented, if not replaced, with its real definition. The latter is suggested here to imply that aging is the product of chemical interactions between the rapidly turning-over free metabolites and the slowly turning-over metabolites incorporated in macromolecules involved in metabolic control. The phenomenon defined in this way emerged concomitantly with metabolic pathways controlled by enzymes coded for by information-storing macromolecules and is inevitable wherever such conditions coincide. Aging research, thus, is concerned with the elucidation of the pathways and mechanisms that link aging defined as above to its hallmarks and manifestations, including those comprised by its nominal definitions. Esoteric as it may seem, defining aging is important for deciding whether aging is what should be declared as the target of interventions aimed at increasing human life and health spans.