2018
DOI: 10.1587/nolta.9.24
|View full text |Cite
|
Sign up to set email alerts
|

Asynchronous network of cellular automaton-based neurons for efficient implementation of Boltzmann machines

Abstract: Artificial neural networks with stochastic state transitions and calculations, such as Boltzmann machines, have excelled over other machine learning approaches in various benchmark tasks. The networks often achieve better results than deterministic neural networks of similar sizes, but they require implementation of nonlinear continuous functions for probabilistic density functions, thus resulting in an increase in computational effort. The architecture size of cutting-edge artificial neural networks are ever-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 24 publications
0
0
0
Order By: Relevance