2024
DOI: 10.3390/wevj15010018
|View full text |Cite
|
Sign up to set email alerts
|

Asynchronous Robust Aggregation Method with Privacy Protection for IoV Federated Learning

Antong Zhou,
Ning Jiang,
Tong Tang

Abstract: Due to the wide connection range and open communication environment of internet of vehicle (IoV) devices, they are susceptible to Byzantine attacks and privacy inference attacks, resulting in security and privacy issues in IoV federated learning. Therefore, there is an urgent need to study IoV federated learning methods with privacy protection. However, the heterogeneity and resource limitations of IoV devices pose significant challenges to the aggregation of federated learning model parameters. Therefore, thi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?