In wireless sensor networks (WSNs), implementing a high-precision time synchronization scheme on resource-constrained sensor nodes is a major challenge. Our investigation of the practical implementation on a real testbed of the state-of-the-art WSN time synchronization scheme based on the asynchronous source clock frequency recovery and the reverse two-way message exchange, which can compensate for both propagation delay and clock skew for higher precision, reveals that its performance on battery-powered, lowcomplexity sensor nodes is not up to that predicted from simulation experiments due to the limited precision floating-point arithmetic of sensor nodes. Noting the lower computational capability of typical sensor nodes and its impact on time synchronization, we propose an asymmetric high-precision time synchronization scheme that can provide high-precision time synchronization even with resource-constrained sensor nodes in multi-hop WSNs. In the proposed scheme, all synchronization-related computations are done at the head node equipped with abundant computing and power resources, while the sensor nodes are responsible for timestamping only. Experimental results with a testbed based on TelosB motes running TinyOS demonstrate that the proposed time synchronization scheme can avoid time synchronization errors resulting from the single-precision floating-point arithmetic of the resourceconstrained sensor nodes and achieve microsecond-level time synchronization