2019
DOI: 10.1007/s10479-019-03406-9
|View full text |Cite
|
Sign up to set email alerts
|

Atheoretical Regression Trees for classifying risky financial institutions

Abstract: We propose a recursive partitioning approach to identify groups of risky financial institutions using a synthetic indicator built on the information arising from a sample of pooled systemic risk measures. The composition and amplitude of the risky groups change over time, emphasizing the periods of high systemic risk stress. We also calculate the probability that a financial institution can change risk group over the next month and show that a firm belonging to the lowest or highest risk group has in general a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 30 publications
0
0
0
Order By: Relevance