Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The study delves into the primary large-scale atmospheric features contributing to extreme weather events across Europe during early September 2023. The period was examined using a dataset composed by the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and satellite imagery. In early September 2023, an omega blocking pattern led to the development of a low-pressure system over the Iberian Peninsula producing heavy precipitation and flooding over Spain and acting as a mechanism for a mineral dust outbreak. A second low-pressure system developed over Greece. Extreme precipitation was recorded across Greece, Turkey, and Bulgaria as the system gradually shifted southward over the Mediterranean. The system earned the name “Storm Daniel” as it acquired subtropical characteristics. It caused floods over Libya and its associated circulation favoured the transport of mineral dust over Northern Egypt as it moved eastward. Meanwhile, the high-pressure blocking system associated with the omega pattern induced heatwave temperatures in countries further north. This period was compared with the large-scale circulation observed in mid-September 2020, when severe weather also affected the Mediterranean region. However, the weather systems were not directly connected by the large-scale circulation, as shown in September 2023. Although mesoscale conditions are relevant to formation and intensification of some atmospheric phenomena, the establishment of an omega blocking pattern in early September 2023 showed how large-scale atmospheric dynamics can produce abnormal weather conditions on a continental scale over several days.
The study delves into the primary large-scale atmospheric features contributing to extreme weather events across Europe during early September 2023. The period was examined using a dataset composed by the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and satellite imagery. In early September 2023, an omega blocking pattern led to the development of a low-pressure system over the Iberian Peninsula producing heavy precipitation and flooding over Spain and acting as a mechanism for a mineral dust outbreak. A second low-pressure system developed over Greece. Extreme precipitation was recorded across Greece, Turkey, and Bulgaria as the system gradually shifted southward over the Mediterranean. The system earned the name “Storm Daniel” as it acquired subtropical characteristics. It caused floods over Libya and its associated circulation favoured the transport of mineral dust over Northern Egypt as it moved eastward. Meanwhile, the high-pressure blocking system associated with the omega pattern induced heatwave temperatures in countries further north. This period was compared with the large-scale circulation observed in mid-September 2020, when severe weather also affected the Mediterranean region. However, the weather systems were not directly connected by the large-scale circulation, as shown in September 2023. Although mesoscale conditions are relevant to formation and intensification of some atmospheric phenomena, the establishment of an omega blocking pattern in early September 2023 showed how large-scale atmospheric dynamics can produce abnormal weather conditions on a continental scale over several days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.