recommended by the European Agency for Safety and Health at Work (EU-OSHA) is 5 ppmv [2]. The permissible exposure limit value for H 2 S is 10 ppmv, the Immediately Dangerous to Life and Health (IDLH) level is 300 ppmv and lethal concentrations are in the range of 2000 ppmv [2]. In practice, concentrations ranging from sub-ppmv levels at low pressures to several per cents at atmospheric conditions need to be monitored. Despite a variety of online monitoring options for gaseous H 2 S, its reliable quantitative and selective determination still remains challenging in the field of chemical sensors [3][4][5].In the field of laser spectroscopy, the constant improvement of quantum cascade lasers (QCLs) has led to their application as reliable sources of coherent light ranging from the mid-infrared (MIR) to the terahertz spectral region for sensitive detection of molecular species on their fundamental vibrational, respectively, rotational bands [6][7][8][9]. Due to their tailorable emission wavelength, high output power, compactness, narrow spectral linewidth, and wavelength tuneability, QCLs are optimal choices for spectroscopic applications. In addition, optical resonator designs are constantly improved over the years with the distributed feedback (DFB) [10] and the external cavity (EC) [11] approach being the most prominent ones. A general aim with respect to the ongoing development of QCLs for sensing applications is to reduce the line width of the emitted radiation to a minimum while achieving a spectral coverage as large as possible. So far, EC-QCLs offer the largest tuning range which, depending on the employed gain medium, may cover up to several hundreds of wavenumbers. The external cavity design facilitates broadband spectral tuning by an external diffraction grating, while the selection of the emission wavelength takes place by changing the grating angle relative to the QCL chip.Abstract Hydrogen sulfide (H 2 S) trace gas detection based on off-beam quartz-enhanced photoacoustic spectroscopy using a continuous wave (CW), mode-hop-free external cavity (EC) quantum cascade laser tunable from 1310 to 1210 cm −1 was performed. A 1σ minimum detection limit of 492 parts per billion by volume (ppbv) using a 1 s lock-in time constant was obtained by targeting the line centered at 1234.58 cm . This value corresponds to a normalized noise equivalent absorption coefficient for H 2 S of 3.05 × 10 −9 W cm −1 Hz −1/2 .