The rate constant for the reaction of OH with 3‐methylfuran was measured at 2, 4, and 6 Torr using discharge‐flow techniques coupled with laser‐induced fluorescence detection of OH. The measured rate constant (k) at 298 ± 2 K was (9.1 ± 0.3) × 10−11 cm3 molecule−1 s−1, where the quoted uncertainty reflects twice the standard error of the measurements. This result is in good agreement with previously reported relative rate constant measurements at atmospheric pressure and room temperature. An Arrhenius expression of k = (3.2 ± 0.4) × 10−11 e(310 ± 40)/T cm3 molecule−1 s−1 was determined from measurements of the rate constant between 273 and 368 K. The negative temperature dependence agrees with previously reported theoretical calculations for the reaction of OH with 3‐methylfuran and previously reported measurements of the temperature dependences of the rate constants for the reaction of OH with similar heterocyclic organics such as furan and thiophene.