Owing to the absorbing, refracting and scattering effects of the propagation medium, electromagnetic (EM) energy will degrade with the increment of propagation range, and the maximum value exists at the point of the radiating source. Employing this phenomenon, this paper introduces a novel approach to detect the location of EM transmitters in an atmospheric duct environment. Different from previous matched-field processing (MFP) methods, the proposed method determines the source location through reconstructing the forward propagation field pattern by the backward adjoint integration of the parabolic equation (PE) propagation model. With this method, the repeated computations of PE used in the MFP methods are not needed. The performance of the method is evaluated via numerical simulations, where the influences of the measurement noise and the geometry of the receiver array on the localization results are considered.